298 research outputs found

    Monoidal derivators and additive derivators

    Full text link
    One aim of this paper is to develop some aspects of the theory of monoidal derivators. The passages from categories and model categories to derivators both respect monoidal objects and hence give rise to natural examples. We also introduce additive derivators and show that the values of strong, additive derivators are canonically pretriangulated categories. Moreover, the center of additive derivators allows for a convenient formalization of linear structures and graded variants thereof in the stable situation. As an illustration of these concepts, we discuss some derivators related to chain complexes and symmetric spectra

    Abstract representation theory of Dynkin quivers of type A

    Full text link
    We study the representation theory of Dynkin quivers of type A in abstract stable homotopy theories, including those associated to fields, rings, schemes, differential-graded algebras, and ring spectra. Reflection functors, (partial) Coxeter functors, and Serre functors are defined in this generality and these equivalences are shown to be induced by universal tilting modules, certain explicitly constructed spectral bimodules. In fact, these universal tilting modules are spectral refinements of classical tilting complexes. As a consequence we obtain split epimorphisms from the spectral Picard groupoid to derived Picard groupoids over arbitrary fields. These results are consequences of a more general calculus of spectral bimodules and admissible morphisms of stable derivators. As further applications of this calculus we obtain examples of universal tilting modules which are new even in the context of representations over a field. This includes Yoneda bimodules on mesh categories which encode all the other universal tilting modules and which lead to a spectral Serre duality result. Finally, using abstract representation theory of linearly oriented AnA_n-quivers, we construct canonical higher triangulations in stable derivators and hence, a posteriori, in stable model categories and stable ∞\infty-categories

    Tilting theory via stable homotopy theory

    Full text link
    We show that certain tilting results for quivers are formal consequences of stability, and as such are part of a formal calculus available in any abstract stable homotopy theory. Thus these results are for example valid over arbitrary ground rings, for quasi-coherent modules on schemes, in the differential-graded context, in stable homotopy theory and also in the equivariant, motivic or parametrized variant thereof. In further work, we will continue developing this calculus and obtain additional abstract tilting results. Here, we also deduce an additional characterization of stability, based on Goodwillie's strongly (co)cartesian n-cubes. As applications we construct abstract Auslander-Reiten translations and abstract Serre functors for the trivalent source and verify the relative fractionally Calabi-Yau property. This is used to offer a new perspective on May's axioms for monoidal, triangulated categories.Comment: minor improvements in the presentation (the definition of a strong stable equivalence made more precise, references updated and added
    • …
    corecore